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Derivation of the stationary generalized Langevin equation 
Y. FUKUI and T. MORITA 
Department of Applied Science, Faculty of Engineering, Tohoku University, 
Sendai, Japan 
MS.  received 13th July 1970, in revised form 31st  October 1970 

Abstract. The stationary generalized Langevin equation is derived from the 
Liouville equation. The ‘random force’ involved in the obtained equation 
satisfies the equation of motion for a dynamical variable. The fluctuation- 
dissipation theorems are derived and written for the present equation. The 
relationship with Mori’s generalized Langevin equation is given. 

1. Introduction 
A Brownian particle suspended in a liquid moves under the influence of the 

collisions of the molecules constituting the liquid. The collisions are considered 
stochastic, but their effect reduces the velocity of the Brownian particle on the 
average. I n  writing the equation of motion for the Brownian particle one separates 
the friction term, leading to this average reduction of the velocity, from the remaining 
part which is stochastic. With this consideration, one is led to the Langevin equation 

d 
dt 

m-u(t)  = -yu( t )+f ( t ) .  

The first term on the right-hand side represents the systematic reduction of velocity 
and the coefficient y is called the friction constant. The second term is the remaining 
part which is stochastic. I n  treating this equation, the second term is usually treated 
as a random variable and hence it is called the random force. 

When one is concerned with the behaviours of the particle in a long time scale, 
the random force in the Langevin equation may be assumed to have only an instan- 
taneous correlation, In  this case, y has been shown to be connected with a correlation 
of f(t) by the fluctuation-dissipation theorem (Kubo 1966). On the other hand, in 
the calculation of the short time behaviours, one can no longer neglect the correlation 
of the random force in the time of the order of a collision duration. I n  order to 
treat such a case, Kubo (1966) proposed the following generalization of (1.1) : 

1 nt 
U 

m-u(t) = - dt’y(t-t’)u(t‘)+f(t) 
dt - m  

a memory effect is introduced in the friction term. Then Kubo suggested that the 
function y( t )  must satisfy the relation: 

744 (u(o)2 > = f(0) ) - (1 .3)  

Mori (1965) investigated the Liouville equations of motion for a number of 
dynamical variables, X,(t), X2(t) ,  ..., and Xn(t), and showed that those equations 
can be expressed as the following generalized Langevin equation : 

n t  

- x j ( t )  = 2 QjkXk(t)- 2 1 d t ’ r , k ( t - t ’ ) X k ( t ‘ ) + ~ j M ( t ) .  
d 
dt  k = l  k = l  t o  

(1.4) 

477 
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He derived the second fluctuation-dissipation theorem for this equation 
n 

2 lid) (Xk(O), X,*(O) ) = (RF(t) ,  R1"*(0) >. (1.5) 
,=I 

Iblori's equation is applicable after an initial time to, and the random force occurring 
in the equation depends on the arbitrarily chosen initial time to. Since the physical 
quantity 'random force' must be defined in such a way that it is independent of such 
an arbitrary time, it is desired to split the random force of this nature out of R,"(t). 
In  fact equation (1.2) proposed by Kubo is stationary andf(t) in it seems to have such 
a property. 

I n  the present paper, we start from the Liouville equations for the variables 
Xl(t ) ,  Xz( t ) ,  ..., X,(t), and we show that such a generalization is possible. As a 
result, we obtain 

n t  d 
-X3( t )  = LI,,X,(t)- 2 dtr,,(t-t')X,(t')+R,(t). (1.6) 
dt k = l  k = l  - - C O  

Comparison of (1.4) with (1.6) shows that Mori's RiW(t) involves an integral from - CO 

to to ,  in addition to the random force R,(t). It is also shown that the function P3,(t) is 
related with the random force R3(t) by the second fluctuation dissipation theorem: 

n 

2 F,,(t> <X,(O), -&*(O) > = <R,(t>, R.*(O) > *  (1.7) 
IC = 1 

LVhen one treats the set of equations (1,6), one may try to solve these equations by 
considering only the statistical properties of R3(t), without recourse to their equations 
of motion. Such is the standpoint usually adopted in treating the Langevin 
equation (1.1). Thus it would be natural to call the term R3(t) the random force. 

The set of derived equations (1.6) may also be used in the calculation of the 
two-time correlation function. The  correlation function (X,(t),X,*(O)) appearing 
in the linear response theory is an example of such a function: in that case (A, B*) 
is defined by 

dX(A exp(-XH)B* exp(XH)). (1 -8) 

As is easily seen, the correlation function defined by (1 .S) satisfies the stationariness 
condition 

(A(t) ,  B*(t ' ) )  = (A(t- t ' ) ,  B*(O)) (1 *9) 
and the symmetry property 

( A ,  B*)* = ( B ,  A*) .  (1.10) 
When we are interested in the calculation of the correlation function (X j ( t ) ,  X,*(O)), 
we set up the generalized Langevin equation with the aid of the definition of the 
correlation function (A, B*). If we are interested in another type of correlation 
function different from (1.8) we are also able to derive another generalized Langevin 
equation, corresponding to the correlation function. In  that case it would be sufficient 
to require the properties (1.9) and (1.10) for the correlation function. 

The  contents of this paper are as follows. The  next section is devoted to the 
introduction of the notations convenient for the description in the subsequent 
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sections. Under the assumption of the relations (1.9) and (l.lO), the stationary 
generalized Langevin equation, (1.6) or (3.19)) is derived in § 3. Then in 5 4 a 
derivation is given of the second fluctuation-dissipation theorem (1.7). The  first 
fluctuation-dissipation theorem which gives the time-dependent correlation function 
of the dynamical variables is given in $ 5 .  An alternative derivation of the same result 
is given in the Appendix. The  relationship of (1.6) with Mori's equation (1.4) is 
discussed in $6. $ 7  is for conclusions. 

2. Notations 
The correlation function (A ,  B )  considered in this paper is a quantity which is 

defined as a function bilinear in the matrix elements A,, and Bw,. For simplicity of 
notations the set of matrix elements A,, is denoted either by ( A  or by A) .  The cor- 
relation function (A,  B )  is then a bilinear form of ( A  and B ) .  dccording to the 
concept of tetradics (Zwanzig 1966 and Morita et al. 1970), ( A  and B )  are called the 
bra-vector and the ket-vector, respectively. Each of them is a vector representation 
of the operator A or B. From this point of view, a relation A + B = C can be expressed 
as (A+ ( B  = (C or as A ) +  B )  = C). I n  the same way, relation xA = B can be 
expressed as x (A = ( A x  = ( B  or as A )  x = x A )  = B ) ,  where x is an arbitrary 
complex number. 

In  order to describe the time development of the system, we now introduce a 
linear operator L which is multiplied to the right of a bra-vector or to the left of a 
ket-vector. The  operator L is defined by 

1 
( A L  = --- ( [ A ) H ]  

ii 
and 

1 
L B )  = - [ H , B ] )  

#i 

(2 . la )  

(2 . lb)  

where H i s  the Hamiltonian of the system under consideration. The  Hamiltonian H 
is assumed to be independent of time. The  equation of motion for the Heisenberg 
operator A(t) = exp(iHt/ii)A exp( - iHt/zZ) can now be expressed in a simple form as 
follow~s : 

d 
- (A(t)  = ( A ( t ) L  
dt 

and 
d 
- dt  A(t) ) = L A ( t )  >. 

(2.2a) 

(2.2b) 

As the solutions of these equations with initial value A(0) = A, the bra- and ket- 
vectors corresponding to the operator A ( t )  are expressed as follows: 

and 
( A ( t )  = ( A  exp(lt) 

A ( t ) )  = exp(Lt)A). 

(2.3a) 

(2.3b) 
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We require the stationary property for the correlation function; that means the 
relation 

for an arbitrary value of T and for an arbitrary pair of operators A and B. With the 
aid of equations (2.2a) and (2.2b), one sees that this equation is equivalent to 

( A ( t - t ~ ) L , B ( t ) ) f  (A(t+7),LB(t)) = 0 .  (2.5) 

(2.6) 

By putting t = T = 0, one obtains 

(AL, B )  = - ( A ,  LB) 
in general. Xamely the correlation function changes sign when the operator L is 
carried from the bra-vector to the ket-vector. 

In  the next place, we consider a number of dynamical variables X ,  and their 

matrix calculationst we denote a column matrix composed of a sequence of bra- 

t Let us illustrate the situation when the quantities X j  and X,* are made to correspond 
to vectors u j  with components ujl, a j z ,  .... and a j z  and bk with components bkl, bk2, .... and 
bkz ( j ,  k = 1, 2, .... E). In this case a bra-vector ( a j  represents a row matrix and a ket-vector bk) 

(ar = ( a m 2  ... a d  

Hermitian conjugates X,*(j = 1, 2, .... tz). According to the notations used in the 

represents a column matrix: 

and 

In place of the correlation function ( X j ,  Xr* ) we consider a product of (a ,  and bk), namely 

1 

(a,. bk) = 2 ajsbkr. 
8 = 1  

Similarly ( X  and X* ) are replaced by ( a  and b) defined as follows : 

and 

... ( bla b2a ... b n z )  b) = (b1)bz) bn)) = . . . . . . . . . . . . . .  
\bll  b z L  ... b,,l 

The role of the matrix ( X ,  X* } is played by the following matrix: 

. ... 
. ... 

(a,. bl)  (ar bz) bn) 
bn) ( a .  b) = (':'I . (bl)bz), . .bn)) = ( (UZ bl) ( U S .  bz) 

(a" (an bl )  ( U ,  . b z )  , . . ( U ,  h n )  
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vectors (XI, (X,, ..., and ( X ,  by ( X .  Similarly, a row matrix composed of a 
sequence of ket-vectors X1*),  Xz* ) ,  .,,, and X,*) is written as X*>. An n x n  
matrix whose jkth element is given by the correlation function ( X j ,  x k * )  is expressed 
as ( X ,  X * ) .  In  the same way, ( A ,  X * )  represents a row matrix whose elements are 
<A,X,*),  (A,X,*) ,  ... , and (A,X,*),  and ( X ,  A )  a column matrix whose 
elements are ( X I ,  A ) ,  ( X 2 ,  A ) ,  .,,, and (X,, A) .  

If the determinant of the matrix ( X ,  X * )  is not zero, we can introduce an operator 
P which is multiplied to the right of a bra-vector or to the left of a ket-vector. The 
operator P is defined by 

( A P  = ( A ,  X * ) .  ( X ,  X*)-'. ( X  (2.7a) 
and 

P B )  = X * ) .  ( X ,  X * ) - ' .  ( X ,  B )  (2.7b) 

where ( X ,  X*}- I  represents an inverse matrix of ( X ,  X*>. The products of matrices 
appearing on the right-hand sides of the above equations are considered to be calcu- 
lated by the usual rules on the matrix product. It is straightforward to show from the 
above definition, that (AP2 = ( A P  and P 2 A )  = P A )  for an arbitrary operator A.  
These relations mean that P is a projection operator. 

If we substitute {Xi and Xk*), respectively, in place of ( A  and B )  of equations 
(2.7a) and (2.7b), we have 

and 

It will be natural to describe the above equations in terms of the matrices { X  and X * )  
as follows: 

( X P =  ( X  (2.9~) 
and 

P X * )  = X * ) .  
The  projection operator P satisfies the following identity: 

(2.9b) 

( A P , B )  = ( A ,  PB> (2.10) 

which is easily confirmed by using ( 2 . 7 ~ )  on the left-hand side and (2.7b) on the 
right-hand side. 

I n  this place, we define a row matrix a}, whose elements are xl), S,},  ..., 
and a,}, by the relation. 

8 )  = X*). ( X , X * ) - l *  (2.11) 

Then equations (2.7a) and (2.7b) are rewritten as follows: 

( A P  = ( A ,  S )  . ( X  (2.12a) 
and 

P B )  = 8 ) .  ( X ,  B ) .  

It is obvious from the definition (2.11) that 

(2.12b) 

( X , X )  = 1 .  (2.13) 
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'The more explicit forms of (2,12a), (2.12b) and (2.13) are given byt  
n 

(AP = 2 ( A ,  Xi) ( X ,  (2.14a) 
j = 1  

and 

(2.14b) 

(xj, L%?k> = 6 j k .  (2.15) 
(The notations introduced in the present section are summarized in table 1.) 

Table 1. Summary of the notations 

Notation Operator 

<A A 
A " )  A" 

<AL 
-i 
A 

i 
ti 

- [A, HI 

LA* ) - [H, A*] 

n 

<AP 2 <A,k,)Xk 
k = l  

p. 

P A * )  2 X h ( X k , A * )  
k = l  

f The above statements will be understood if the example used in the previous footnote is 
considered. Since (a and b) are associated to (X and X*), the equations corresponding to 
(2.11), (2.14a), and (2.14b) are 

* 
b)  = b) * (a. b)-1 

and 

n 

(YP = 2 (Y ."b) (ai 

Ps) = 2 b",) (ak . s). 

P = 2 "b) (a,. 

, = 1  

n 

k = l  

The above relations show that the projection operator P in this example is formally written as 
n 

j = 1  

In  this case equation (2.15) becomes 
I 

( U j  . b,) = 61,. 

I t  will be valuable to notice that P is a projection operator in the oblique coordinate system. 
P pcojects (Y to the (hyper) plane spanned by (al, (az,. , ,, and (a, and s) to the (hyper) plane spanned 
by bl), b2) ,  ..., and b,,); cf. a footnote in a paper by Morita e t  al. (1970). As the latter (hyper) 
plane is spanned by b l ) ,  bz),  ..., and b,) one can say that P projects s) to the (hyper) plane 
spanned by the latter set {bJ<)). 
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Finally it is noticed that the projection operator P is used in the next section to 

(A = (AP+ (A(1-P). (2.16) 

As is easily seen from (2.8b) and (2.10), the first term (AP has the same correlation 
with Xk") as the left-hand side {A, i.e., 

(2.17) 

(AP is a linear combination of {Xl, { X 2 ,  ..., and (Xn.  The remaining term (A( 1 - P )  
is the part which has no correlation with Xk"). 

divide a variable {A into two parts as follows 

{AP, xk*) = ( A ,  xk*). 

3. Stationary generalized Langevin equation 
The notations introduced in the previous section are used in this and the 

subsequent sections of this paper. The following arguments are based on the require- 
ments (2.6) and (1.10) on the correlation functions: namely, the stationariness 
property 

(AL, B )  = - (A, L B )  ( 3 4  
and the symmetry property 

(A ,  B" )* = (B ,  A* ) 

where the asterisks denote the complex conjugate of a number or the Hermitian 
conjugate of an operator. If (A in equation (3.1) is a column matrix composed of 
bra-vectors {Al, {Az, ..., and {An, {AL means the column matrix which is com- 
posed of (AIL ,  {AzL, ..., and (AnL. The situation is the same for LB) if B )  is a 
row matrix. A similar property for (AP  and PB) follows from the definition of P. 

We consider a number of the Heisenberg operators Xl(t), Xz(t), ..., and X,(t), 
which are expressed by bra-vectors : 

(Xr(t) = { X i  exp(Lt) = (XjT(t) (3.3) 

T(t)  = exp(Lt). (3 *4) 

cf. (2.3a). We first take attention to the operator 

Its time-derivative is expressed as 

d 
dt 
- T(t) = LT(t). 

With the aid of the projection operator P, we divide L into two parts, cf. (2.16) 

d 
dt 
- T(t) = LPT(t )+L( l  -P)T(t). 

(3 .5)  

We solve this differential equation by treating the first term on the right-hand side 
as the inhomogeneous part, where an arbitrary time to  is chosen as the initial time, 
Then we have 

T(t) = exp(L(1 -P)(t-to)}T(to) 
t 

dt ' exp (L( 1 - P )  ( t - t ')}LP T( t ') 
+ s,. (3.7) 
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Substituting this expression in the second term on the right hand side of (3.6), we 
obtain 

d 
- T(t) = LPT(t)+L(l-P)  exp(L(1 -P)(t-to))T(to) 
dt 

+L(1 --PI f dt’ exp(L(1-P)(t-t’))LPT(t’). (3.8) 
t o  

We take a time-derivative of (3.3)) and substitute equations (3.8) and (2.14a). 
As a result, we obtain the following equation of motion for Xf ( t ) :  

- f dt’Fjk(t-t’) (xk(t’) (3.9) 
k = l  t o  

where 
Qjk  = 2/< ) (3.10) 

(RJ(t-to)(t) = (Rj( t - t~)  exp(Lt) (3.11) 
(3.12) 

(3.13) 

(Rj(t-to) = (XjL(l-P) exp(L(l-P)(t-t,)) exp(-L(t-to)) 
and 

rjk(t) = - <X,L(I-P)  exp(L(1-P)t)L,2k). 

MultipIyhg ( x k ,  X,”) to (3.10) and (3.13) and summing over k, one obtains 
n 2 Q j k  <xk! x i *  > (XjL, x i*  ) (3.14) 

k = l  

and 
n 

rjk(t)(Xk) x , * >  = - (xj’L(1-P) exp(L(1-P)t)L) xl*) (3.15) 
k = l  

where use is made of the relation (2.8b). 
Equation (3.9) is the equation of motion for the Heisenberg operator X,(t) and 

hence the right-hand side takes the same value independent of the arbitrary initial 
time to.  We assume that rjk(t) decays to zero when t becomes large enough. If to 
is chosen such that t - t o  is large enough, then the time to  in the lower limit of the 
integral in the last term of (3.9) may be set equal to - CO. Now all the terms other 
than the second term on the right-hand do not depend on to. Hence the second 
term also must be convergent. We write the limiting value of R j ( t - t ~ )  as Ri: 

(R ,  = lim (X,L(l -P)  exp(L(1 -P)t} exp( -Lt) .  (3.16a) 
t+m 

From table 1, the corresponding ket-vector is given by 

Rk*) = lim exp( -L t )  exp((1 -P)Lt)(l -P)LX,*). (3.16b) 
t -im 

As a consequence, one obtains 
n t  

- (xj( t )  = Qjk(Xk(t)- 2 / dt’rjk(t-t’)(Xk(t’) + <R,(t) 
dt k = l  k = l  -a 

d 

(3.17) 



Derivation of the stationary generalized Langevin equation 485 

where Cl,, and r jk( t )  are given by (3.14) and (3.15)) and <Rj(t) by 
Y 

with 13.161. 
(R,(t) = ( R j  exp(l t )  (3.18) 

, I  

Equation (3.17) is the stationary generalized Langevin equation, which we 
desired. It should be noticed that the random force (R,(t) in this equation is ex- 
pressed as (3.18). It means that it is the Heisenberg operator corresponding to a 
dynamical variable R,; Note the fact that the corresponding quantity in Mori's 
equation was not so. 

I n  this place we regard (Xj(t) and (R,(t) as thej th  components of column vectors 
(X(t) and (R(t), respectively, and X,*(t)) and R,*(t)) as thej th  components of row 
vectors X*(t)) and R*(t)), respectively. Q j k  and Pjk ( t )  are the jkth elements of 
matrices Cl and r( t ) ,  respectively. Then (3.17) is written as 

t d 
- (X(t) = 0 .  (X(t)- 1 d t ' r ( t - t ' ) .  <X(t')+ (R(t) (3.19) 
dt - m  

and the equations (3.14) and (3.15) are expressed as 

Q . ( X )  X * )  = (XL, X * )  (3.20) 
I'(t). (X, X * )  = - (XL(1-P)  exp(L(1-P)t}L, X * ) .  (3.21) 

4. Fluctuation-dissipation theorem 

correlation of random forces R,(t). 

(2.10) and (3.1): 

2 r jk( t ) (Xk,  X,*)  = ( X , L ( l - P )  exp{(l--P)L(l-P)(t-t,)} exp(-L(t-to)) 

I t  is shown in this section that the 'friction function' r,,(t) is related with the 

For this purpose, (3.15) is rewritten as follows with the aid of the properties 

n 

k = l  

x exp(Lt), exp(Lto) exp{-(1 -P)L(1 -P)to)(l -P)LX,*). 

(4.1) 
This equation holds for an arbitrary value of to .  If t o  is tended to minus infinity, 
the factor before the comma converges to (R,(t) and the factor after that converges 
to RI*); cf. (3 .16~)  and (3.16b). As a result, one obtains 

In  the matrix notation, (4.2) is written as follows: 

r ( t )  . (x, x *  ) = ( ~ ( t ) ,  R*(o) >. (4.3) 
4s  stressed at the end of the preceding section, Rj(t) is the Heisenberg operator 

corresponding to the operator Rj. It follows from this fact that the correlation 
function (R, R*) satisfies the following equation: 

( R ,  R*)* = ( R , R * )  = - ( R ,  R*)  (4.4) 
where a dot on an operator denotes the time-derivative of the operator. Now the 
diagonal elements (Rj, Rj*)  are pure imaginary. The  above arguments can be 
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applied to classical systems. I n  that case, Rj, Rj”, and {Aj,  Rk*) are real for ordinary 
choices of variables X,, and hence 

(A j ,  R j * )  = 0 (classical). (4.5) 

5. Correlation functions of dynamical variables 
We take a correlation of equation (3.17) with X,*(O) and obtain 

.1 n 

t 
- i 1 dt’P,k(t - t’)  <Xk(t’), Xl*(O) > + (R,(t), X,*(O) ). 

(5-1) 
k = l  -CO 

It is noticed that a part of the contribution of the second term on the right hand side 
cancels exactly with the last term: 

2 dt’rjk(t-t’) <X,(t’), X,*(O)) = <Rj(t) ,  X,*(O)). ( 5 . 2 )  

A proof is achieved by substituting the definition (3.13) of rjk(t) into the left hand 
side. Then one has 

1 

0 

k = l  -CO 

0 

dt’rjk(t - t’) <xk(t’), X,*(o) ) 
k = l  -cc 

0 
= - i 1 dt‘(XJ(1-P) eXp(L(l-P)( t - t ‘ )}L,~k)  

k = l  -cc 

(Xk exp(lt’), ) 
0 

= - 1 
= - < x j L ( l  -P> exp(L(1 -P>(t- t ’ ) )  exp(lt’), x,* > I t , =  

dt’(XjL(l - P )  exp(L(1 -P)(t-t’)}LP exp(lt’), X l * )  
- m  

t ’ = O  

= (R,(t), X,”(O) ) - ( R j y t ) ,  X,*(O) ) (5.3) 
where use has been made of the definitions (3.11) and (3.18). -4s will be seen from 
(2.86) and (2.10), the last term of the above equation vanishes, and hence we have 
proved (5.2). 

By substituting (5.2) into (5.l), one obtains 

- ? ;̂ dt’r,k(t - t’) <xk(t’), x,*((o) ) ’(5.4) 
k = l  0 

or, in the matrix form, 

d 
- (X(t), X”(0))  = R . <X( t ) ,  X*(O)) 
dt 

t 

dt’P(t-t’) . (X( t ’ ) ,  X”(0) ) .  (5.5) - io 
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In  this place we introduce the Laplace transform of <X(t), X*(O)): 

(x ,  x *  ) p  = jl d t  exp( -pt) (x(t), x*(o) >. (5.6) 

Equation (5.5) is easily solved as follows: 

(5.7) 

(5.8) 

where F p  is the Laplace transform of r(t). 
In  the above derivation of the result (5.7) with ( 5 . Q  we take advantage of the 

relation (5.2). If this relation is not used, the same result is attained by taking cor- 
relations of equation (3.17) with XI*(0))  and Rl*(0)) and taking a Fourier transform, 
after using various relations between the correlation functions. The  derivation is 
sketched in the Appendix. 

6. Relation with Mori’s generalized Langevin equation 

equal to zero. I n  this case we see from (2%) and (2.10) that 
The  equation (3.9) becomes Mori’s generalized Langevin equation when t o  is set 

( R y ( t ) ,  X,*(O)) = 0. (6.1) 
When we start, alternatively, with the stationary Langevin equation (3.17)) it is 

supposed that Mori’s equation is obtained from (3.17) simply by putting 
? O  

(R,Yt) = <RJ(t) - 2 1 dt’F,k(t - t’)  ( X d ~ ’ )  (6.2) 
k = l  - r 

(cf. Kubo 1966). Then (3.17) reduces to 
n t  d 

- (X , ( t )  = Q J k ( X k ( t ) -  2 1 dt’l?,,(t-t’) (Xk ( t ’ )+  (RjAf(t). (6.3) 
dt k = l  k = l  0 

Equation (5.2) shows that the correlation of Ri‘(t) defined by (6.2) with X,*(O) is 
zero : 

This shows that equation (6.3) thus obtained is equivalent to Mori’s equation. We 
expect from equations (6.1) and (6.4) that R?j(t) is equivalent to ( t ) ;  I n  fact, 
this is prored if all the terms in equation (5.3) are written without the factor X,* ) .  
I t  is well known that the fluctuation-dissipation theorem 

(R jM( t ) ,  X,*(O) ) = 0.  (4.4) 

n 
2 r7k(t) (x,, x,* ) = ( ~ , y t ) ,  R ,M*(o)  ) 

k = l  

follows from the equations (6.3), (6.4), (3.1) and (3.2); see, for example, Fukui and 
Morita (1970). When R,”(t) is identified with R,(t)(t), this relation is also derived 
from the definition of r(t) as given by (3.15): namely 

n 2 r J k ( t ) ( X k , X l * )  = ( X , L ( l - P )  exp(L(l-P)t),(l-P)LXl*) 
k = l  

= (Rl(t)(t) ,  R,‘O’*(O) ). 
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7. Conclusions 
The equations of motion are written for the Heisenberg operators of a number of 

dynamical variables, Xl( t ) ,  Xz( t ) ,  ..., and Xn(t). The equations are transformed by 
using a suitable definition of the correlation (X3( t ) ,  Xk*(o)). -As a result, we obtain 
the stationary generalized Langevin equation : 

n t  d 
-X,(t)  = 2 Q,,X,(t)- 2 1 dt’r,,(t-t’)X,(t’)+R,(t) (7.1) 
dt k = l  k = l  --io 

a,, is expressed in terms of the static correlations of X, and xk* (cf. (3.14) or (3.20)). 
The ‘friction function’ r‘,,(t) is defined by (3.13). R,(t), representing the ‘random 
force’, is found to be the Heisenberg operator for a variable R; (cf. (3.18) and table 1). 

In  deriving (7.1), the correlation function (A, B * )  is assumed to satisfy the 
stationariness condition (1.9) and the symmetry property (1.10). We consider the 
case of linearly independent variables X ,  for which the determinant of (X,(O), 
xk*(o))  does not vanish. It is also assumed that the friction function r,k(t) vanishes 
sufficiently fast for large values of t. 

The random force R,(t) is related with 3CIori’s random force RiM(t) by 

and satisfies the second fluctuation-dissipation theorem (4.2) or (4.3) ; thus these 
relations suggested by Kubo (1966) have been confirmed. 

With the aid of the first fluctuation-dissipation theorem ( 5 4 ,  the correlation 
function (Xj ( t ) ,  Xk*(o)) is calculated from F,,(t). .It is assumed that r j k ( t )  decays 
fast. The  second fluctuation-dissipation theorem shows that rjk(t) is determined 
from the correlation of the random force (Rj(t), Rk*(O)) and that (Rj(t), l i k * ( o ) )  

decays as fast as rjk(t). Thus one can evaluate the correlation function (X j ( t ) ,  
Xk”(0)) if the short-time behaviour of (Rj(t), R,*(O)) is known. 

The left-hand side of the generalized Langevin equation (7.1), dX,(t)/dt, is equal 
to the total force acting on the variable X,(t). The first two terms on the right-hand 
side are determined by the instantaneous values of Xk(t) and their values within a 
short time before t. In  addition to these systematically determined contributions, 
the total force usually involves another part that fluctuates in a random way. This 
randomly fluctuating part must, therefore, be included in the remaining term of 
(7.1), that is in R,(t). If some knowledge about the short-time behaviour of the 
random force is obtained from the physical consideration of the fluctuating behaviour 
of the total force, the stationary generalized Langevin equation (7.1) will be helpful in 
understanding the properties of many-particle systems. 
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Appendix. Correlation functions of dynamical variables 
In  9 5 ,  the correlation functions of the dynamical variables are shown to be 

solved with the aid of the Laplace transform. In  this Appendix, we derive the same 
result without taking advantage of the relation (5.2). 
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Let us take the correlations of equation (3.19) with R*(O)) and X*(O)) and take 
a Fourier transform. The  results are 

[iw - Q +I?,,] . (X, R*),(") = ( R ,  R* 

(iw - Q + rim) . (X, X* = ( R ,  X* 

(A+ 1) 

( A 4  

and 

where (X, X*)w(F), (R ,  R*)m(F), (R,  X*),@" and (X, R*),(F) are the Fourier 
transforms of (X(t), X*(O)), (A(t), R*(O)), (R(t), X*(O)), and {X(t), R*(O)), 
respectively: for example 

W 

(X, x *  ) m ( F )  = 1 dt exp( - iwt) (X(t), X*(O)) (A.3) 
- m  

rim being the value at p = iw of the Laplace transform P p  of r(t). The Hermitian 
conjugate of equation (A.2) is 

( X ,  X* . [ - iw - Q* + &J*) = (X, R* (-4.4) 
By eliminating ( X ,  R*)'g) from (A.1) and (A.4), one obtains 

- 
1 1 

(X, x *  )o(F)  = . ( R ,  R* . 
iw - i2 +riw - iw - Q* + (4.5) 

With the aid of the fluctuation-dissipation relation (4.3), the Fourier transform 
{ R, R*),(F) is expressed as follows : 

(R, R*),(") = r i w  * (x, x* ) + (x, x *  ) . (rim)* 
= ( i o  - Q + riCJ . (X, X* ) + (X, X* ) . { - i o  - Q* + (Fl,)*}. (A.6) 

(Note that Q.(X, X * ) + ( X ,  X*>.Q* = (XL ,  X*>+ (X, L X * )  = 0). Substituting 
this equation into (AS),  one obtains 

1 1 
(X, x *  ),(F) = , (X,X*)+ (X,X") * (A.7) 

i o  - Q + rim - iw - a* +(ria)*' 
The two-time correlation function (X(t), X*(O)) is evaluated by a Fourier inverse 
transform : 

( X ( t ) ,  X*(O) ) = -L f dw exp(iwt) (X, X* ) w ( F )  

W 

277 --1)3 

I P m  1 I 
= I J dw exp(iwt) 9 (X, x * >  

2%- --(o iw - Q + 

We can confirm the fact that the result obtained by (A.8) is consistent with the 
one given by (5.7) with (5.8). I n  doing so, we assume that the integral in (5.6) is 
absolutely convergent when Rep 2 0. This means (X, X*), is regular on the right- 
hand side of the complexp-plane. As a result the first and the second terms of (A.7) 
are regular in the lower and the upper half planes, respectively, of the complex 
w-plane. From this fact, we conclude that, when t is positive, the second integral of 
the right-hand side of (A.8) vanishes and the first one gives the identical result as 
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(5.7) with (3.8). This implies that the first term on the right-hand side of (A.7) is 
the Fourier transform of the positive part of the correlation function (X(t) ,  X*(O)). 
In  the same way one can show that the second term is the Fourier transform of the 
negative part; it is easily seen also that this is a direct consequence of the identity 

( X ( t ) ,  X*(O)>* = ( X (  - t ) ,  X*(O)). 
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